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At this time there is no doubt about the exceptional role of the "explosion" phenomenon: 
a nonstationary quasiperiodic process in whose concluding stage an abrupt ejection of delayed 
vortical fluid from the wall occurs in the domain of the turbulent boundary layer core, 
in the generation of near-wall turbulence. On the whole, this process has been studied well 
indefinite stages of development. Its most important element is organized structures in 
the form of counter-rotating longitudinal vortices located in the viscous sublayer zone 
and their accompanying "streaks" -- small retarded fluid jets [I]. The connection between 
the streaks observed during flow visualization and the above-mentioned coherent structures 
is displayed in [2]. A mean transverse scale of the coherent viscous sublayer structures, 
which was %+ - I00 in near-wall scale units, is obtained as a result of numerous experiments 
[3-6]. It is assumed that the "explosion" phenomenon is associated with an unstable mode 
of mean velocity profile in the streak zone. Unstable perturbations with a large growth 
increment result in streak separation from the wall and its subsequent intensive destruction, 
which is indeed recorded as the "explosion" phenomenon. Up to certain times no reliable 
model existed for the mechanism for the origination of pairs of counter-rotating longitudinal 
vortices of the scale ~eing recorded although hypotheses were expressed about the relation 
of these vortices to the nature of Goertler vortices on a curvilinear surface [7] where 
theappropriate streamline curvature is produced by large-scale vortices located at the 
turbulent boundary layer core. However, this hypothesis has still not been developed further. 
The question is apparently resolved in [8], where a mechanism is proposed for which the 
idea of direct resonance realized [9] for a broad class of laminar flows is underlying. 

A change in the mean scale of the coherent structures is observed when using different 
control factors in order to reduce the surface friction of the turbulent boundary layer. 
As a rule, an increase in the mean scale of the structures [i0, ii] accompanies diminution 
of viscous friction. However, there are data of another nature. Thus, elastic surface 
deformation under the action of a turbulent boundary layer were studied in [12]. The longitu ! 
dinal surface deformations were associated with the presence of the vortex system considered 
above in the near-wall boundary layer zone. An increase in surface friction was recorded 
in addition to growth of the characteristic scale of the structures. In general, the question 
of the influence of a deformable surface on the viscous friction of a turbulent boundary 
layer has remained open up to now. There is information about both the substantial reduction 
in viscous friction and about its increase [12-14]. 

Coherent structures existing in the near-wall turbulent boundary layer zone are studied 
in this paper by their "imprint" left on a plastically deformable surface. The method of 
visualizing the streamlines of near-wall turbulent flow was used by Prandtl [15] by using 
a liquid oil dye superposed on a streamlined surface. After several minutes a system of 
alternating bands of dye and dyeless solid substrate occurs on such a surface (Fig. i). 
Prandtl gave no explanation of this phenomenon while representations existing at that time 
about coherent structures in a viscous sublayer permit finding the explanation of such 
an effect by connecting these two phenomena. 

As investigations showed, the above-mentioned method of studying the near-wall structure 
of the turbulent boundary layer permitted disclosure of a number of interesting phenomena 
accompanying the flow above a plastically deformable surface. In particular, the question 
occurs of the possible diminution of viscous friction on such a surface since the results 
obtained indirectly yield a foundation for this hypothesis. 
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i. EXPERIMENTAL INVESTIGATIONS 

The action of a turbulent boundary layer on a plastically deformable surface was studied 
in an open flume with a 5 • 17 cm rectangular nozzle section for a U = 5.62 m/sec water flow 
velocity. A 17 • 50 cm rectangular plate of H = 3 mm thick organic glass with rounded-off 
leading edge was placed at a distance L = 5 cm from the nozzle in the middle section of the flow to 
eliminate boundary layer separation. Before starting the installation, the plate was colored with 
a natural oil dye. After build-up to the working mode, fine-scale wave motion accompanied by a slow 
dye flow under the action of the tangential stress of the free stream could be observed on the color 
surface. After 2-3 min a longitudinal structure of alternating strips of slowly flowing color and 
color-free substrate starts to appear on the streamlined surface. Then the surface pattern 
is stabilized and exists a sufficiently long time until a considerable part of the dye is 
removed by the stream. Represented in Fig. 1 is a photograph of the surface at the stage 
of stabilization of the structure formation process. The distance from the plate leading 
edge is x = 0.32-0.38 m. 

In order to obtain information aboutthe general nature of the flow in the boundary 
layer, measurements are performed of the mean velocity profile on the plate without dye (Fig. 
2) by using a Pitot tube with D = 0.4 mm outer and d = 0.2 mm inner diameters. The mean 
velocity profile was measured at a distance of x = 0.475 m from the plate leading edge. 
The velocity is referred to the dynamic velocity u+ = 0.287 m/sec, which was determined by the 
wall law by the Clauser method [16] with Karman constant ~ = 0.41 The Reynolds number 
over the momentum loss thickness is Re@ = 6070. It is seen from the measurement results 
that under given free stream conditions a developed turbulent boundary layer is realized 
on a smooth plate. 

For the surface pattern represented in Fig. 1 to be realized, the fluid motion in 
the intervals between the dye strips should have a velocity component transversal to the 
main flow. A flow produced by a pair of counter-rotating vortices located between these 
strips can correspond fully to such a motion, i.e., coherent structures whose presence in the 
near-wall turbulent boundary layer zone on a smooth place is detected in the papers mentioned 
above. In this case it is impossible to make a deduction about the lifetime of these vortices 
and their stability; however a statistical investigation of the transverse scales can be 
performed for such pairs if their dimensions are related to the distance between the dye 
strips. This analysis permitted indirect information to be obtained about the dynamics of 
coherent structure interaction. 

A statistical treatment of the transverse scales of coherent structures that were 
identified by the distance between adjacent streaks was performed in [6]. It would be 
desirable to note here that in our case the dye strips correspond to the streaks. A normal 
logarithmic distribution function 

~0 

P(%) ~exp[-- I 

= (i + sf)-1 t $0 = [In (i + $f)]i 2 = 

~ = (X~- <X>)~ ~ 

(i.i) 

was taken for the coherent structure scale distribution in [6], where <%> is the arithmetic 
mean of the structure scale for a fixed distance from the beginning of the boundary layer. 
The magnitude of the relative dispersion of structures for different Reynolds number values 
is obtained in the range 0.3 < ~l < 0.4. 

In our case the statistical ensemble of the dimensions being investigated was chosen 
from 14 experimental realizations and was n = 1200 on the average for each transvese section. 
The statistical treatment was realized in ii sections. The scales were measured on the stereo- 
comparator of "STEKO" equipped with an automatic perforation unit for the results with sub .... 
sequent processing on an M-4030 electronic computer. The accuracy of measuring the strip 
scales was 10 Nm. Displayed in Figs. 3a-c are scale distribution histograms for three differ- 
ent sections (x = 0.25, 0.36, 0.47 m). The data are superposed in absolute dimensions since 
the characteristic scale in wall units is unknown for the deformable surface. The approx- 
imation by the logarithmically normal distribution (i.i) is shown by the smooth line. It 
is seen that the distribution function is self-similar along the flow. 
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Presented in Fig. 4 is a verification of the statistical hypothesis [17]. The argument 
Y 

of the normalized function ~(y) = S P(~dz~: y = In(%/<~>), is plotted along the ordinate axis. 

The integral is taken over the experimental step distribution function; the line corresponds 
to the logarithmically normal distribution. It is easy to see the good the degree of approximation 
of the experimental data by the logarithmically normal distribution (i.i). 

The dynamic velocity governs the characteristic scale of the coherent structures on 
a smooth surface since, as has already been mentioned above, a universal value is obtained 
for the dimensionless scale (~+) = (~>u+/~Ni00 in numerous experiments. As yet there is 
no foundation for rejecting similar representations for coherent structures on a deformable 
surface, with the exception of the fact that the corresponding value (X§ will depend 
on the properties of this surface. If it is assumed that the mean scale of structures on 
the plastically deformable surface is independent of Re in near-wall scale units, and is 
governed just by the properties of the surface, then the nature of the change in viscous 
friction of the boundary layer being investigated along the flow can be found from the functional ~ 
dependence of the absolute value of the mean dimension of the structure on the longitudinal 
coordinate. In the range Re x - 107 under consideration, the viscous friction of a turbulent 
boundary layer on a smooth plate is proportional to ~w - Rex ~ (see [18], say), which means 
( X > N X  ~ . However, as follows from Fig. 5, in the case of a deformable surface <~)Nx0, 2~ , 
from which according to the elucidation above, ~w - Rex -~ i.e., friction varies with the 
longitudinal coordinate analogously to laminar boundary layer friction. It is not yet clear 
whether boundary layer laminarization actually occurs on a plastically deformable surface. 
Both direct measurements of the friction on such a surface and a study of the detailed struc- 
ture of near-wall turbulence are necessary to clarify this question. An increase in the 
characteristic scale of the coherent structures is still another fact in favor of friction 
diminution. The correlation between these two circumstances was remarked in [i0, ii]. The 
characteristic scale of coherent structures in this case exceeds by 3-4 times that being 
realized on a smooth plate under the same conditions. 

2. THEORETICAL MODEL OF COHERENT STRUCTURE INTERACTION 

A logarithmically normal distribution holds in those cases when the fluctuation of 
the random variable depends on its value. The mean dimension of coherent structures is 
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increased along the stream. Growth of the scale shows that the coarser structures displace 
the finer ones, i.e., the structure lifetime grows as the intrinsic dimensions increase. 
This means that the fluctuations to which the structure dimensions are subjected depend on 
their magnitude. Moreover, a change in the scale of one structure results in corresponding 
changes for the nearest neighbors since the total vortex system pattern is practically in- 
dependent of local scale changes (see Fig. i). The above elucidation is a certain foundation 
for the scale distribution obtained. The circumstance that the distribution function is 
known can be used to construct an elementary theory of vortex structure interaction. Anal- 
ogously to [19], we find the kinetic equation for the coherent structure scale distribution 
function. Let us recall that a pair of counter-rotating vortices in. the near-wall boundary 
layer zone and extending along the flow is considered as the coherent structure. In the 
transverse direction the vortex system is the alternation of such pairs with logarithmically 
normal structure distribution along their dimensions %. The intensity of the vortices united 
into a pair &s assumed to be identical while the scale I corresponds to their total dimension. 

Let us examine the dynamics of such a vortex system in time by understanding that a 
change in the structure dimension in time corresponds to their variation along the flow, 
i.e., we introduce the transformation t = x/U. 

Let n(k, t)d% be the number of structures per unit length with scales between the 
limits (X, X + dl). Then the total number N of structures per unit length and their mean 

scale have the form 

N (t) = S n (~,, t) d~.; ( 2 . 1 )  
0 ~ 

<~, (t)} = N-1(t) ~ ~,n(~,t) d ~. ( 2 . 2 )  
0 

By definition 

N(t) <~(t)) = t .  ( 2 . 3 )  

Let us introduce two functions governing the process of structure interaction: r(k, 
t) is the reciprocal structure lifetime as a function of their dimension, and w(A', l, t) 
is the probability of occurrence of structures of scale (%, i + dX) because of destruction 
of adjacent pairs with scale k'. The possible correlation of dimensions of adjacent struc- 
tures is neglected in the construction of the present theory and the structures themselves 
are considered as interacting particles. It is seen from Fig. i that the process of destroy- 
ing one scale and the occurrence of another is of the merger type, i.e., a total scale 
structure occurs because of the interaction of two adjacent structures. Losses of structures 
of scale % are associated with two processes: destruction of a structure determined by the 
intrinsic lifetime and destruction of adjacent structures entailing a change in the scale 
under consideration. The number of structures with scale % is enlarged because of the pro- 
cess. of. merger of two arbitrary structures of total scale k. The probability density of 
the fact that on one of the sides of the structure I there is a structure X' is 2n(X', 
t)N-1(t). The probability that the destruction of an adjacent of scale l' will cause a 
change of the scale % is 112. In conformity with the above elucidation, we write the kinetic 

equation as 
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O n  (~.,  t )  - -  r (E, t) n (~,., t) - -  r (E', t) n (E'~ t) d%' n (E, t) + r (%', t) n (~.', t) w (E', E, t) dE'. 
o- - - -7- -  = -N- ( 2 . 4 )  

0 

By definition for the function w (X', X, t) 

~ w ( E ' , ~ , t ) d ~  = 1. ( 2 . 5 )  
0 

The relationship (2.5) corresponds to the fact that a new structure of some scale will occur 
during merger. The change in the total number of structures per unit length with time 
can be obtained if (2.4) is integrated with respect to all the scales. Then by using the 
relationships (2.1), (2.3) and (2.5), we find 

dN d <~> t 
d--}" = - -  " -~ -  <f>~ = - -  J r (%, t) n (~, t) dE. ( 2 . 6 )  

0 

Since self-similarity of the distribution function is obtained in experiment, we introduce 
appropriate self-similar functions by the relationships 

n(k, t)dE = N(t)P(~)d~ = P(~) dE/(E >~, 

r(E~ t) = ~(t)R(~),  w(E'~ %,: t)d% W ' ( 2 . 7 )  

H e r e  ~ ( t )  i s  t h e  v o r t i c i t y  s c a l e  c h a r a c t e r i z i n g  t h e  v o r t e x  f r o m  t h e  v o r t e x  p a i r .  Such  a 
time scale is introduced because the characteristic time of vortex pair development is of 
the order of the period of rotation of the vortices comprising it. After substitution of 
(2.7) into (2.4), we obtain an equation in the self-similar functions introduced 

( f P + ~ ~ l  3 (~') p (~') d~' - -  R (~) P (~) + a (~') P (~') W (~', ~) d~' = O. ( 2 . 8 )  
% 

0 0 

The f u n c t i o n  W(5, ~ ' )  s a t i s f y i n g  t h e  r e l a t i o n s h i p  ( 2 . 5 )  and r e f l e c t i n g  t h e  p r o c e s s  o f  o r i g i n -  
a t i o n  of a scale ~ as a result of merger of two scales can be represented in the form 

{ P ( ~ -  ~')' ~ ' ~ '  ( 2 . 9 )  
w(L~' )=  o, ~'>~. 

For the known function P(~) defined by (i.i), the equation (2.8) is integral in the function 
R(~). Because of the homogeneity and linearity of (2.8) the function R(~) is determined 
by the accuracy of an arbitrary factor. Let us renormalize this function by dividing it 

by the constant ~ = yR (~')P(~')d~', and let us introduce a new R+(~) = R(~)P(~)/~. The equation 
0 

for the function R+(~) 
I 

0 

is a Volterra integral equation of the second kind. The method of direct replacement of 
the integral by a finite sum by a generalized trapezoidal formula [20] is used to solve 
this equation. 

The solution of (2.10) is represented in Fig. 6 for ~0 = 0.244, which corresponds 
to an experimental value. For ~i = E0/<E> = 0,97 the function R+(~) changes sign the first 
time. This shows that the number of structures with scale X< ~(E)(~(E>) diminishes with 
time while the number of structures with scale E~ (E> increases, i.e., a tendency to growth 
of the mean scale is observed. In the neighborhood of ~ = ~l the function behaves as 
R+(~) = -(i/~) in (~/~I)P(~). The scales corresponding to the even roots ~n = (n + 1)/2 
(n is the ordinal number of the root) of the function R+(~) are stable. Unstable scales 
among which is indeed the mean dimension of coherent structures considered above correspond 
to the odd roots. Its change with time is given by (2.6), which in this case has the form 

d(E )/<E)dt = a~( t ) .  ( 2 . 1 1 )  

The mean s c a l e  o f  t h e  c o h e r e n t  s t r u c t u r e s  on a p l a s t i c a l l y  d e f o r m a b l e  s u r f a c e  v a r i e s  i n  
conformity with the law (E)~t ~ (see above). It follows from (2.11) that the charac- 
teristic vorticity associated with coherent structures varies according to the law 
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~(x),-, . ,U/x. (2 .12 )  

Here t he  i n v e r s e  passage  i s  r e a l i z e d  to  t h e  dependence on t he  l o n g i t u d i n a l  c o o r d i n a t e .  Accord-  
ing t o  t he  assumpt ion  made above,  t h e  l i f e t i m e  of  a v o r t e x  p a i r  i s  de t e rmined  by i t s  a s s o c i a t e d  
c h a r a c t e r i s t i c  v o r t i c i t y .  The r e l a t i o n s h i p  (2 .12 )  y i e l d s  t he  dependence of  t he  v o r t i c i t y  
s c a l e  on t h e  l o n g i t u d i n a l  c o o r d i n a t e .  Hence t h e  c h a r a c t e r i s t i c  l i f e t i m e  of  t h e  s t r u c t u r e  
i s  

T ( N ~ - I )  ,,, x/U. (2 .13 )  

The relationship 

O/x,,.,u$/U 2 (2 .14 )  

i s  v a l i d  f o r  a t u r b u l e n t  boundary l a y e r  (O i s  t h e  t h i c k n e s s  of  t h e  momentum l o s s ,  and u+ i s  
t h e  dynamic v e l o c i t y ) .  I f  ( 2 . 1 4 )  i s  s u b s t i t u t e d  i n t o  ( 2 . 1 3 ) ,  t hen  we w i l l  have f o r  t he  
d i m e n s i o n l e s s  l i f e t i m e  

T+ ( =  Tu l ly )  N R%. (2 .15 )  

I f  i t  i s  assumed t h a t  t h e  s t r u c t u r e  l i f e t i m e  de t e rmines  t h e  c h a r a c t e r i s t i c  p e r i o d  between 
" b u r s t s , "  t he n  t h e  r e l a t i o n s h i p  (2 . 15 )  e x p r e s s e s  t he  dependence of  t h i s  p e r i o d  on t he  inne r  
and o u t e r  boundary  l a y e r : s c a l e s .  The e x p r e s s i o n  T+ = 0.65Re~ "73 i s  o b t a i n e d  in  [21] f o r  t h e ,  
p e r i o d  between " b u r s t s , "  but  t h e  l i m i t e d  number of  da t a  and t h e i r  r a d i c a l  sp read  do no t  
y i e l d  comple te  c o n f i d e n c e  in  t h e  exponen t .  The a t t r a c t i v e n e s s  o f  t he  exponent  p = 0.73 
i s  a p p a r e n t l y  t h a t  t h e  r e l a t i o n s h i p  TU/6 = c o n s t  ( s ee  [22])  i s  v a l i d  f o r  i t ,  and g o v e r n s  
t h e  dependence o f  t h e  p e r i o d  between b u r s t s  on ly  on t he  o u t e r  p a r a m e t e r s .  However, a t  t h i s  
t ime i t  i s  c o n s i d e r e d  t h a t  t h e  p e r i o d  between " b u r s t s "  depends on both  t he  o u t e r  and t he  
i nne r  boundary l a y e r  s c a l e s .  The r e l a t i o n s h i p  (2 .15 )  y i e l d s  such a c o n n e c t i o n .  

3. DISCUSSION 

The singularity of the coherent structures considered above is that they are developed 
above a surface that is deformed easily under the action of tangential stresses. A wave 
mode of fluid film flow with different rheological properties is here realized on the surface 
itself. The question arises as to the manner in which such a combined flow influences the 
viscous free stream drag. On one hand the fluid surface can suppressthe process of turbu- 
lent velocity fluctuation generation, while on the other the presence of a fine-scale film 
flow wave mode can influence it as additional surface roughness. Finally, when a film flow 
mode in the form of alternating bands occurs on the combined surface, a mechanism of turbulent 
energy generation suppression is possible because of the more ordered development of near- 
wall coherent structures. Ordering can be associated with the fact that in this case the 
coherent structures are separated by a barrier that takes a shape corresponding to the exist~ 
ence conditions for these structures. In other words, the shape and scale of such rifling 
are self-consistent with the boundary layer being developed on this surface. The favorable 
influence of longitudinal rifling on the reduction of viscous friction of a turbulent boundary 
layer is shown in [23], where an 8% reduction in friction is obtained by an empirical selection 
of the shape and scale of the rifling and the mechanism for viscous friction diminution is 
different since the characteristic scales of the artificial rifling by which the noticeable 
reduction in friction is achieved are significantly less than the characteristic scale of 
the near-wall vortex structures existing on a smooth plate under the same conditions. In 
this case the transverse roughness executes a stabilizing role, whereby the relatively small 
degree of viscous friction diminution is explained. The investigations performed in this 
paper afford a certain foundation for hoping that friction conditions can be realized on 
a plastically deformable surface during which turbulent energy generation will be suppressed 

in a more optimal manner. 

However, even if these deductions are not confirmed by direct measurement of the viscous 
friction, they demand a clarification of the results underlying the reason for such assumptions.i 
Among them are the increase in the mean scale of the coherent structures as compared with 
the dimensions of structures on a free surface under the same external conditions and the 
law of variation of the mean scale of structures along the stream. Investigation of the 
boundary layer reaction on change in the boundary conditions discloses additional possibilities; 
for the construction of a near-wall turbulence generation model. 
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F i g .  6 

The t h e o r y  p r o p o s e d  in  S e c t i o n  2 i s  an a t t e m p t  t o  u t i l i z e  t h e  r e p r e s e n t a t i o n  o f  c o h e r e n t  
s t r u c t u r e s  as  i s o l a t e d  e l e m e n t s  l a s t i n g  a l ong  t i m e  and r e p r o d u c i n g  t h e i r  s h a p e  d u r i n g  i n t e r - .  
a c t i o n s  and b e i n g  an i n h e r e n t  p a r t  o f  t h e  n e a r - w a l l  zone  o f  any  t u r b u l e n t  b o u n d a r y  l a y e r .  
T h i s  would  p e r m i t  r e d u c t i o n  o f  t h e  complex  wave dynamics  o f  p e r t u r b a t i o n  d e v e l o p m e n t  in  
t h e  n e a r - w a l l  zone  t o  t h e  i n t e r a c t i o n  o f  s p e c i f i c  s t r u c t u r a l  e l e m e n t s .  The t h e o r y  i s  phenom- 
e n o l o g i c a l  s i n c e  i t  r e l i e s  on t h e  v i s u a l  p a t t e r n  o f  t h e  s c a l e  change,  and t h e  e x p e r i m e n t a l l y  
o b t a i n e d  s c a l e  d i s t r i b u t i o n  f u n c t i o n  o f  s t r u c t u r e s .  Only  n e a r e s t  n e i g h b o r s  a r e  t a k e n  i n t o  
a c c o u n t  d u r i n g  s t r u c t u r e  i n t e r a c t i o n  and t h e  c o l l e c t i v e  n a t u r e  o f  t h e i r  i n t e r a c t i o n  i s  i g n o r e d .  
How i m p o r t a n t  t a k i n g  a c c o u n t  o f  t h e  l o n g - r a n g e  o r d e r  i s ,  i s  shown in  [24] where  t h e  d y n amics  
of pairwise merger of chains of coherent structures modeling free shear flow is examined 
on the basis of the conservation laws. However, an important distinction of coherent struc- 
tures in the near-wall turbulent boundary layer zone is that viscosity effects are essential 
for them. Consequently, a priori it is difficult to estimate the role of the collective 
effects; in this case they are simply neglected. This difficult question requires a more 
detailed study. The relation obtained theoretically connecting the period between the"bursts" 
and the outer and inner boundary layer parameters reflects the power-law dependence of peri-~ 
od, made dimensionless in the near-wall scales, on Re 8 correctly on the whole according to 
experiment. 

The author is grateful to B. G. Novikov for turning attention to the relationship 
between the near-wall vortex structures and the deformation of a pliable surface and the 
possible diminution of the viscous friction thereon. 
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TURBULENT BOUNDARY LAYER ON THE ROTATING END OF A SWIRL CHAMBER 

E. P. Volchkov, S. V. Semenov, 
and V. I. Terekhov 
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Aerodynamics and heat transfer in the neighborhood of a rotating disk have been studied 
by many investigators. A survey of such works can be found in [i], for example. Most of 
these studies examined the cases of rotation of a disk located in a free volume or exposed 
to an axial flow [1-3], as well as the interaction of a twisted flow with a stationary surface 
(a bibliography on this subject can be found in [4]). 

Information on the interaction of a rotating disk with a twisted flow is limited to 
[5, 6]. The authors of [5] theoretically examined the turbulent boundary layer formed on 
a disk rotating at an angular velocity ~ and interacting with a gas flow which was itself 
rotating as a solid. A theoretical and experimental study was made in [6] of the laminar 
boundary layer on the rotating end wall of a swirl chamber. The angular velocity of the 
end was fixed, while the gas rotated in accordance with the law governing a free vortex. 

In actual swirl chambers with an outlet containing a diaphragm, the rotation of the 
gas takes place in accordance with a complex law. As a first approximation, the flow out- 
side the outlet hole is assumed to be a potential flow in which the circulation F = v0r = 
const, where v 0 is the circumferential component of velocity in the flow core. As was 
shown in [4, 7], such a law of flow rotation is observed with a:change in the radius from 
the lateral wall of the chamber R to r* (r* determines the radius value where all of the 
gas enters into boundary layers on the end plates and travels through them into the region 
of the outlet hole). The rotation of a gas in a swirl chamber or tube not provided with 
a diaphragm occurs in accordance with the law of quasi-solid rotation at an angular velocity 

= v0/r = const. 

Rotating end plates can be used in a number of vortex-type processing units to improve 
their efficiency. In these cases, the circumferential velocity of the flow decreases with 
approach toward the end wall. The velocity decreases not to zero, but to the linear velocity 
of rotation of the end at the given point. This alleviates the imbalance of centrifugal forces 
in the end boundary layer and preserves the radial pressure gradient in it, which leads 
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